10 Common Gotchas in Accessible

Development
2018

Blackboard

‘ i




Who am I?

Elizabeth Simister
Product Accessibility Manager

Bringing now 14 years of
experience in assisting
educational and government
institutions in understanding
what it means to be accessible.

My name is Elizabeth Simister and | am the current product accessibility manager at
Blackboard. | got my start in accessibility in 2004 in what is now the K. Lisa Yang and Hock
E. Tan Institute on Employment and Disability Institute at Cornell University. One of my
biggest responsibilities was understanding how to take scanned journal pages with lots of
charts, graphs, tables, and math formulas and make them in accessible PDFs. After Cornell,
| spent a number of years working as a contractor helping different organizations figure out
what they needed to do to be accessible. I've been at Blackboard for about 9 months and
my primary focus is on working with our development teams to get them to the point
where all of our products are as accessible as possible.



Understanding Accessibility

Developers need to understand
Visual % how people with different abilities 9 Cogritive
Impairments . . Impairments
interact with technology.

s 4
Hearing D " a | Physical
Impairments (W |mpairments
. ' 4

More and more attention is being placed on building technology that works for all
types of users. To do that developers need to understand how different types of
people interact with their tools and how to apply accessibility coding best practices
to create experiences that work for everyone.

Let’s start by understanding a little more about how people with disabilities interact
with technology.



Assistive Technology

There are four types of of assistive technology that
developers need to understand:

* Input Devices and Speech-to-Text
* Screen Readers
* Screen Maghnifiers

* Literacy Software

Although there may be similarities between each of these types of ATs, such as
screen magnifiers with screen reader keyboard commands, overall each of these
technologies comes with its own unique characteristics that can be impacted if code
is not designed or developed with accessibility in mind.



Input Devices and Speech-to-Text

Alternative input devices and
speech-to-text tools are used
by people with limited
mobility or fine muscle
control. They can include:

* Keyboards
* Mouth sticks

* Foot pedals

* Voice recognition tools S
— Dragon Naturally Speaking DRAGON
NATURALLYSPEAKING
— Dictation

There are a variety of input devices that could be used be people with limited
mobility. They could range from keyboard and voice recognition tools, to foot
pedals and mouth sticks. All of them are intended to assist a user in moving around
the interface and interacting with the elements of your site.



Screen Readers

These tools are used for
navigation and text-to-
speech by individuals who
are blind, have low-vision,
or cognitive issues
typically via the keyboard
or braille refresh devices.

N nvaccess

Screen readers that assist with both “reading” and navigation are generally used by
individuals with significant vision loss or total blindness. These tools (like JAWS,
VoiceOver, and NVDA) allow non-visual users to understand the structure and
content within your application as well interact with the elements of the interface.
Many of these tools have features built within them that help individuals interact
with technology. They have the ability to quickly understand the structure of a
page; view a list of links or buttons; move quickly between headings; and many
more. The availability of these tools means the way non-visual people interact with
technology is very different than how visual people do.

This is where some of the biggest impact for accessible development lives.



Screen magnifiers

Tools allow low-vision zoo

users or users with color m
perception impairments
to configure the “zoom” -
and color contrast Rt Cul-AleF

© Lens Ctri+Alt+L
settings. In some S il
instances, these users can

Preview full screen Ctrl~Alt=Space

access keyboard . MAGic® Screen
commands to more easily Magnification Software
find information. with Speech

Although there are related features between screen readers and screen magnifiers, | want
to point out the differences. Th biggest is the ability of most screen magnifier tools to alter
the color contrast of content. When color is not considered as part of the design or
development process, it can cause these tools not to work smoothly with alternative user
set contrasts.



Literacy Software

Tools for reading and
comprehension help
individuals with cognitive
challenges process
information. Unlike screen -' teXthelpm
readers, they often do not

support the same number -
of keyboard commands HeadSpeaker BD

Enhancing the Learning Experience

Kurzweil 3000

by Kurzweil EDUCATIONAL SYSTEMS

0Q

for navigation.

Literacy software is used for reading and comprehension (like TextHelp, Kurzweil,
and ReadSpeaker) and is generally used by sighted individuals with cognitive
disabilities who need the content to be read aloud to them so they can internalize
and understand the information. There are a number of additional features within
most of these tools, but for our purposes today, there isn’t much else you need to
know. If you do everything else right, these will work properly.



Impact to Developers

So what does this all mean for developers?

Developers execute a design vision and really bring it to life. That means that they
are the foundation for how everything works. An understanding of coding best
practices related to accessibility is key to building a solid foundation. But, in today’s
development world it’s still often considered a specialized skill set that needs to be
learned. As with learning anything new, there are several easily misunderstood, or

misapplied, concepts that can trip up any developer getting started with accessible
coding.

Let’s spend the rest of the session talking through the 10 most common gotchas in
accessible development.



Gotcha 1

You do not need to use heading, list or
table elements to structure a page.
They have no impact on accessibility.

One of the most basic misconceptions is that you can build custom HTML elements or skip
over semantic structures like heading levels without impacting accessibility.

10



Semantic Structure

HTML elements come with @ DO Use headings, list and
expected behaviors. People table elements to convey the
understand how they are structure of content on the

suppose to work. page.

_ © DON'T Skip heading levels or
Properly structured headings, use headings to convey

tables, and list elements system structure & layout.
provide a logical context for o

. . . DON'’T Use tables to displ
the information displayed. >¢ rables fo dispiay

content that is not tabular.

© DON'T Use list elements for
items that should not be
grouped OR use list elements
for unrelated content.

This one is more about good quality code than accessibility. Good semantics always
matter. HTML has a number of “elements” which contain expected behaviors,

styles, etc. This could include things like layout containers, tables, links, buttons, etc.

Non-visual users rely on headings to help them understand the nested structure of
content in a page. They rely on headings being logically and consistently used to
help them gain context and awareness throughout the application.

Make good use of Headings to convey structure of CONTENT (think an old-
fashioned paper newspaper structure)

But don’t skip heading levels, or if you do, do it consistently. And avoid using
headings to convey system layout as that can cause additional work for AT users
trying to navigate the application.

When tables are used to provide a visual structure of a page, screen reader users
can become confused trying to figure out how content relates or try using table
keyboard commands. Nested tables are some of the worst for screen reader users

11



as they can become “trapped” in the cells.

Using lists incorrectly or not all can be problematic for several types of users. Think
about it from a cognitive perspective, your tool tells you that you are in a list but
visually you just see text. ??? Confusing right.

11



Gotcha 2

Landmarks don’t really provide any
value. What are they anyway?

But what about landmarks? The question | hear most often is “What are they used for and

are they truly useful”?

12



Landmarks
Landmarks are complimentary @ DO Stick to standard
to headings and help a non- landmark roles to ensure
visual user establish an consistent interaction
understanding of page across screen readers.
structure. CAUTION Use role=region
Landmarks provide the overall and be sure to give it a
layout, while headings add unique label if there is no
structure to page content. other way to create a

landmark.

Landmarks are an ARIA construct that allows developers to create semantically valid
“regions” on a page that can help support screen reader navigation and provide
structure within a page or application. They are complimentary to headings.
Landmarks focus on the layout and types of information within the page. Headings
provide structure to the content.

There are 8 roles in ARIA that are designated as “Landmarks”.

Banner

Main

Navigation
Contentinfo
Complementary
Form

Search

There are also 6 default elements in HTML that automatically map to these
landmarks — saving time. Those include.

Header (maps to banner)

13



* Main

* Nav

* Footer (maps to contentinfo)
* Aside

* Form

Landmarks can be applied to any generic element of custom control to expose
accessibility information, but the most common misconception, is that you can create
your own landmarks. Stick to the standards to ensure screen reader users can
properly interact with your application. If you really need to create something not
provided in the list above, use role=region and be sure to give it a unique label.

13



Gotcha 3

@ Buttons and links are interchangeable.

And the last of the “semantic” elements — buttons and links.
Strangely, there is a lot of confusion among developers about when something
should be a link and when it should be a button.

14



Buttons and Links

Like headings, lists and tables, @ DO Use a link if it takes you
buttons and links come with to another page.

expected behaviors. ® DO Use a button to

When these don’t work as perform an action like
expected, you're increasing Submit or open a dialog
the amount of effort involved window.

in using your application. CAUTION Be wary of

making links look like
buttons as cognitive users
may expect one behavior
and be surprised when a
different behavior occurs.

Here’s the simplest break down.

A button is used when you’re executing some action on a page and NOT changing
the context.

A link is used when you’re changing context — like opening another page or layer in
the application.

There are a couple of reasons this matters.

Non-visual users have developed mental models about what each of these
elements do. Their screen readers will read out WHAT it is (a link or a button) and
that allows them to make an assumption about what will happen. When a button
navigates them to a new page, it can be jarring and confusing because it’s not
what’s expected.

Sighted users not using a mouse SEE something that looks like a button or a link and
they have a preconceived understanding of how to activate it.

15



* Pressing SPACE or saying “Click BUTTON” to activate something that looks like a
button.
* Pressing ENTER or saying “Click LINK” to activate something that looks like a link.

When these don’t work as expected, you're increasing the amount of effort it takes
people to use your application.

So, if the element takes the user to another context, make it look and work like a link.

If it executes an action on a page (like saving data on a form) — make it look and work
like a button. If you really need to break this rule, at least do it consistently across
your application.

15



Gotcha 4

Focus is controlled by the browser.
There is nothing extra that needs to be

done.

Let’s move now into Focus Management. One of the most common
misunderstandings | continue to see is the assumption that the browser will handle
the focus for you. It’s critical that focus is never dropped or unexpectedly moved.
While this can sometimes happen by default when pages refresh, more often you

need to programmatically control it.

16



Focus Management

When context is dynamically @ DO Place focus on
changing, or when you’re elements that makes sense
building a single page to non-mouse users.
application, you need to @ DO Trap focus in the active

carefully control focus for layer & return them to the

users. same location.

The goal is to always put the CAUTION Avoid sending

user in an appropriate location focus to a non-interactive

after a change. element. If you do, make
sure it's excluded from the
tab order.

Controlling focus is the key to helping users understand where they are at all times.
But controlling focus for screen reader users and keyboard only users can be a bit
different. The goal is to always put the user in an appropriate place when the screen
changes. For keyboard users, it’s best to send them to the first interactive element
in the new context when you’re moving them between pages or layers.

But for screen reader users, they may need more context, as the first interactive
element may come AFTER the page heading, or descriptive information they need
to understand where they are.

A general best practice is to send focus to the first heading or div in the new context
to ensure non-visual users know where they are. But you also need to make sure
this element doesn’t end up in the tab order and create clutter for a keyboard only
users. We’'ll talk more about how to do that in the next section.

One final, but critical element of controlling focus is returning the user to the right
place in the previous context when they move “back”. This is especially important
when you’re working with modal dialogs or layers in a single page application. You

17



also need to ensure you're trapping focus in the active layer for the duration it’s
open. One of the most frustrating things is to lose your place by having focus drop
back into the background layer and having no idea where you are or how to get back.

17



Gotcha 5

To control focus or make a screen
reader read static content you need to
add a tab index.

Ok. We just talked about controlling focus. One of the most common ways to set a
focus target is with the tab index attribute. But it’s also something to be careful
with.



Gotcha 6

Menus and site navigation are the
same thing.

The biggest gotcha with menus, is using them to build primary site or application

navigation elements. These are technically not menus.

19



|
Menus
Both menus and blocks of @ DO Group sets of actions
navigation are collections of together into menus or
like elements allowing the user menu bars.
to do something. @ DO Use role=navigation or
Menus are grouped sets of the HTML <nav> element
Navigation blocks are more groupings.
accurately grouped lists of © DON’T Force asite
links. navigation structure into a
menu, even if it seems
simpler to implement.

Menus are widgets that offer a list of choices to a user, such as a set of actions or
functions. They contain “menu items” and can be contained in “menu bars” to
create more robust constructs. Menu bars are generally persistent visible elements
that are presented horizontally and intended to mimic the action menus in many
desktop applications.

The mental models for interacting with menus have been around for a long time
and are pretty well understood. Once the menu has focus, use the arrow keys to
move around it. Use up/down to move within the menu items. In a menu bar, right
and left cycle you to the next parent menu or a sub-menu of the item in focus if
appropriate. Escape will close or exit the menu. Tab will move you to the next
interactive element on the page — after the menu.

Navigation constructs are not technically “menus”. The are more accurately
organized groups of links. This distinction goes back to the differentiation between
buttons and links — like buttons, menus are about taking action in the same context.
Navigation structures are about just that, navigating to a new context.

20



Rather than forcing these elements into a menu construct, wrap them in a navigation
landmark. Use ARIA roles and states to provide context and awareness around “sub
groups” and allow the standard tab order to control the keyboard interactions.

20



Tab Index
Standard interactive elements @ DO Use tabindex=-1 if you
are added to the tab index by need to send focus to a
default. They are not needed non-interactive element,
at all on static elements. like a dialog window when

it first opens.
All you gain by adding a tab P

index to static elements is @ DO Use a tabindex=0 on all
increased clutter for people custom controls.

using other input devices. © DON’T Add tabindex
Unless you are setting context attribute on any static

and focus after dynamic elements in the page, e.g.,
changes. plain text.

Standard interactive elements (like links, buttons, and menus) are automatically
added into the tab order so you don’t need to add a tab index attribute.

But, tab index can be added to any element. One of the most common
misunderstandings is that you need to add tabindex=0 to non-interactive elements
in order for screen reader users to be able to focus on it and read the text. That’s
not true.

Screen reader users have other ways of finding and reading text that’s in proximity
to other elements they can navigate to directly (like headings, tables, links, buttons,
etc). All you gain by adding tabindex=0 to non-interactive elements is extra tab
stops for sighted keyboard users, which quickly becomes very annoying.

If you're programmatically sending the user to a non-interactive element (which is a
good practice to control focus and ensure an awareness of context) add tabindex=-1
rather than tabindex=0. This will allow focus to be sent there, providing context to
screen reader users, but it will keep it OUT of the tab order and reduce the clutter
for sighted keyboard users.

21



Gotcha 7

Tabs are one of the easiest way to
organize information for all users.

There is an on-going debate in web accessibility circles about whether or not tabs
are a useful construct at all due to the complexity and confusion they often incur

for screen reader users. But a lot of the confusion comes in when they are not used
properly. So let’s dig into that.

22



Tabs

There is an on-going debate in @ DO Review the intended
web accessibility about the interaction and be sure you
usefulness of tabs for non- can commit to the entire
visual users. tab list pattern.
When used correctly, they can CAUTION In using tab lists
to commit to the entire commonly masquerade as
pattern. tabs including:

* Accordions

* Pages and Panels

* Navigation Structures

Tab lists and panels are used to organize information into separate sections within
the same page.

If you have a design that seems to suggest the need for a tabs, review the full
interaction model for tabs. If you can’t commit to implementing the entire pattern,
it’s not a tab construct and you should explore other implementation options.

Some of the critical elements of tabs and tab lists include:
* A need for at least two tabs and tab panels
* One tab needs to be selected at all times
* Only content from selected tab can be available to screen reader
* Moving between tabs does not change the page, only some content within the
page
* The tab list should be treated as a single interactive element
* Arrow keys are used to move between the tabs.
* Use SPACE key interaction to load a content within a tab
* The next tab press on the keyboard should move to the next interactive
element on the page, which may be within the tab, or further down the



page.

If you can’t commit to using the entire pattern for tab lists, the alternatives you
consider will be based on design objectives. Some options might include:

* Accordions

* Pages and panels

* Navigation elements

23



Gotcha 8

Dynamic page changes are announced
to screen readers automatically.

The idea of changing content dynamically on a web page or within an application has been
around so long it’s become the standard. The challenge is, assistive technology — like screen

readers — aren’t able to detect when these dynamic changes are made. They need to be
programmatically told.

24



Live Regions
As modern web development @ DO Use live regions to
evolves, some common communicate dynamic
patterns are emerging to changes on the page to
inform non-visual users about non-visual users.

)

dynamic changes.

<
Q

DO Use pre-defined live

Live regions provide a method region roles to provide

for announcing changes in text standard updates like error

context without needing to logs, status, and alerts.

steal focus from the user’s © DON'T Interrupt the user’s

current interaction. current task for every
update.

Which brings us to live regions

Live regions are an HTML container that screen readers can subscribe to. They
provide a method for announcing changes in text context without needing to steal
focus from the user’s current interaction. The simplest use of live regions is simply
to assign a polite or assertive attribute to the content being sent to the container.

When aria-live=polite the screen reader will wait for a pause in the user’s
interaction before announcing the content in the live region. This is the most
common, and least intrusive way of alerting a user to dynamic changes in content
within a page or application.

If you cannot wait for the user to pause, you can use aria-live=assertive which will
interrupt the user’s current interaction and read the content of the live region
immediately. This method is most useful for errors or important system alerts. It

should be used sparingly.

As modern web development evolves, some common patterns are emerging around

25



when and how to inform non-visual users about dynamic content changes. For these
use cases, some pre-defined roles and behaviors are being defined for live regions.

A few of the most common include:

* Log: used to inform the user of logged content such as chat message, non-critical
errors, game interactions, etc.

* Status: used to present information in a persistent status bar or regular updates on
the page.

* Alert: most commonly used for serious error messages.

Live regions can be incredibly useful, but you should be thoughtful in their use so as
not to overwhelm a non-visual user with information they may not need. When they
are used too often in a short period of time, they have a tendency to confuse the
screen readers.

25



Gotcha 9

There is no danger in building custom
controls as long as you add keyboard

support.

When designers give developers complex and challenging interactions, it can seem simpler
to just go and build custom widgets to handle them. But this can cause serious problems
for screen reader users, and often keyboard users as well if every scenario is not
considered.



Custom Controls (aka widgets)

Custom controls almost always @ DO Use standard HTML
cause problems. A missing role elements first.
or attribute may mean AT CAUTION Make sure that

users won’t be able to interact

’ all appropriate roles and
with the control as expected.

attributes are added per
Very few interactions cannot the ARIA 1.1 specification
be made accessible using

standard HTML and some

creative thought.

Enter “Application Mode”.

The intent of application mode is to allow the web tool to take control of the
keyboard interactions & force them to behave in a way more inline with desktop
applications.

Application mode is invoked automatically when a user focuses on a form element
in a web page, but this change in context is tightly controlled by the screen reader
and expected by non-visual users to enable them to complete a form.

Many developers are introduced to role=application when heading down the path
of custom widget development. Theoretically, this can be quite useful when you
have a custom construct that you’re creating a non-standard keyboard interaction
for. But this is a VERY advanced technique that should be used with considerable
caution.

Application mode steals control of the keyboard and prevents a screen reader user
from using their standard interactions within their screen reader. When not handled

27



carefully the constantly changing context can cause enough confusion for the screen
reader as to render your tool completely unusable.

There are very view interactions that cannot be made accessible using standard
HTML elements and ARIA roles and attributes. With some creative thought and
combination of elements it’s possible to build a very complicated web application
without ever using role=application.

However, if you’ve attempted all other alternatives and really need to use application

mode to achieve your goal there are a few key things to consider:

* You can add application mode on any element in the page by adding
role=application to the element. But then you need to define all potential
keyboard interactions.

* If you have multiple custom constructs, every instance of role=application will be
listed in the page landmarks, but they cannot be distinguished from one another
and often create serious confusion and conflicting commands for the screen
readers

* You should never put role=application on the body of a page unless the entire
page is a custom widget that does not use ANY standard HTML elements.

Application mode is very challenging to implement correctly as you need to consider
EVERY keyboard interaction and build a custom navigation pattern that considers
every possibility.

27



Gotcha 10

Support for accessibility is the
responsibility of the developers
implementing the design.

And last but not least, many design and development teams still believe that accessibility is

an implementation challenge only.

28



Design Choices

A significant portion of the
effort to build accessible
applications is in the
implementation. But many
things can be caught early if

@ DO Ask designers to clarify

the intent of the
interactions if you are
unsure how to implement
something in an accessible

questions are raised during manner.

design reviews.

While a significant portion of building accessible applications is in the
implementation, many things can be caught early if questions are raised in design
reviews.

Some of the most common challenges that can be caught before implementation
begins are

Color contrast issues

Forms without labelled fields

Text inputs without borders

Images without alternative text

Links that look like buttons and vice versa

Reading order, tab order and keyboard expectations

Developers should feel empowered to question designs that include these common
accessibility mistakes.

Always think through how you would need to implement a proposed design and ask
for clarification of the intent if you’re unsure of how to make it work for a keyboard

29



or screen reader user.

29



Blackboard

30





